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ARTICLE INFO ABSTRACT

This paper presents a new bi-material microstructural design method for chiral auxetic metamaterials. Based on
the independent point-wise density interpolation (iPDI) and a bi-material model, optimal design problem of
periodic unit cells is formulated using nodal density variables. The design objective is to minimize the Poisson’s
ratio while satisfying the specified volume constraints of the hard and soft materials, and the effective elastic
properties of the bi-material microstructure are computed by the asymptotic homogenization method under
periodic boundary conditions. This topology optimization problem is solved with a gradient-based mathematical
programming algorithm on the basis of the sensitivity analysis. Several numerical examples, regarding design of
anisotropic, orthogonal anisotropic and isotropic bi-material microstructures of chiral auxetic metamaterials, are
given to demonstrate the effectiveness of the method. It is shown that the proposed bi-material design opti-
mization method can be used to improve the performance of chiral auxetic metamaterials through enlarging the
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1. Introduction

Mechanical metamaterials with negative Poisson’s ratios (NPRs)
[1,2], also known as auxetic metamaterials [3], have attracted con-
siderable interests. Such a material expands in the lateral direction
when uniaxial stretch loads are applied and vice versa. Because of their
special mechanical properties, auxetic metamaterials have potential
applications in a wide range of fields, including medical and biomedical
engineering [4], sport equipment and textile industries [2,5]. More-
over, auxetic materials may be useful to improve fracture toughness
[6,7], acoustic energy absorption [8-11], and resistance to shear
[12,13].

Although most conventional materials in nature possess positive
Poisson’s ratios, the classical theory of elasticity allows the Poisson’s
ratio of a material to be negative. Lakes [1,14] was the pioneer who
designed the first artificial auxetic metamaterials. Since his work, many
studies on auxetic metamaterials have been reported [2] and their ap-
plication in various fields of research and engineering became an in-
teresting topic. Novel multi-material 3D printing techniques have cre-
ated new possibilities of fabricating NPR microstructures composed of
two constituent materials [15]. In recent years, auxetic metamaterials
with mechanical chirality, which can transform a linear deformation
into rotation and twist deformations, have also been studied [16-19].
Additionally, the chirality concept has also been used to design optical
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and thermal metamaterials [20-22]. Up to now, conventional meta-
material design still relies to some extent on the designer’s intuition,
and thus limits the design space.

Topology optimization [23,24] recasts a structural design problem
into a mathematical programming problem. To date, topology optimi-
zation has been widely applied in various engineering fields [25,26],
including material design [27-29]. Among others, the solid isotropic
material with penalty (SIMP) method [24], evolutionary structural
optimization method [30], and level-set method [23] have achieved
popularity. Since the microstructures are crucial to the effective prop-
erties of a metamaterial, many researchers have investigated the design
of microstructures using topology optimization techniques. Sigmund
[29] first introduced topology optimization into material design, and
proposed an inverse homogenization approach to design a re-entrant
structure with negative Poisson’s ratios. Schwerdtfeger et al. [31] and
Andreassen et al. [32] used topology optimization to design isotropic,
re-entrant 3D microstructures with negative Poisson’s ratios and ver-
ified their optimal results with experiments. Xia et al. [33] provided a
simple MATLAB code for density-based topology optimization of NPR
microstructures. Clausen et al. [34] further studied topology optimi-
zation of 3D NPR materials undergoing large-deformation. Ganghoffer
et al. [35] used topological derivative to design auxetic microstructures,
where the mechanical properties were studied with the couple stress
theory and experiments. Wang et al. [28] presented a level set method
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for the design of isotropy and symmetric NPR materials. Recently, to-
pological design of re-entrant NPR microstructures composed of mul-
tiple material phases has also been studied [36,37]. These studies have
provided useful tools for the design of NPR materials with the re-en-
trant deformation mechanism.

Apart from the re-entrant configuration of microstructures, the
chiral (or rotating) mechanism is another deformation mechanism
realizing artificial NPR materials. Chiral microstructures are char-
acterized by noncentrosymmetric configurations, which do not super-
impose on their mirror images. In contrast to the re-entrant counter-
parts, a chiral metamaterial achieves the NPR effect mainly through the
deformation of rotating ligaments. These ligaments easily rotate around
the joints when external forces are applied. Additionally, under the
periodic boundary condition, the chiral configuration allows inter-
locking of unit cells more easily to occur. Therefore, chiral auxetic
metamaterials have a potential to be used as crash-resistant materials
[7]. Due to their unique deformation characteristics, design of chiral
auxetic materials has attracted considerable attention [15,16,38,39].
However, using topology optimization to design chiral mechanical
metamaterials that exhibit NPR properties has not been systematically
studied. This may be partly due to the difficulty of satisfying highly
nonlinear design constraints (e.g. the orthogonal anisotropy and iso-
tropy constraints of the effective material properties) when using some
existing topology optimization formulations. Moreover, it is envisaged
that the multi-material design concept can be used to improve the de-
sired chiral property while still ensuring the required stiffness of the
NPR materials. To this end, this paper focuses on the topological design
of bi-material chiral auxetic microstructures. In the optimization
models, three different metamaterial properties, namely, anisotropy,
orthogonal anisotropy and isotropy are to be achieved. The twisting
behavior of 3D periodic array structures assembled from the optimized
chiral microstructures under axial loading is also studied using finite
element simulations.

The remainder of this paper is organized as follows. In Section 2, we
first introduce the independent point-wise density interpolation (iPDI)
method, and present the basic concepts of the asymptotic homo-
genization. Then, Section 3 presents the topology optimization frame-
work and the sensitivity analysis. In Section 4, several numerical ex-
amples for achieving anisotropic, orthogonal anisotropic and isotropic
NPR properties are given. The advantages of the bi-material chiral
auxetic metamaterials in comparison to single-material ones are de-
monstrated. Finite element simulations of periodic array structures
composed of the optimized microstructural unit cells are also per-
formed. Conclusions are given in Section 5.

2. Material interpolation model and effective property analysis of
unit cells

We adopt the iPDI method [40] to construct a point-wise density
field representing the material distribution in the considered topology
optimization of bi-material microstructural unit cells, and establish the
relation between the Young’s modulus of materials and nodal densities
using the multi-material SIMP method. Then the asymptotic homo-
genization method for evaluating the effective material properties of
the metamaterial unit cells is briefly introduced.

2.1. Independent point-wise density interpolation model

In the iPDI method, the density field is constructed with interpola-
tion of density values at the design variable points, also referred to as
density points (plotted as green points in Fig. 1). Our previous study
showed that the iPDI method was able to improve the boundary de-
scription quality in topology optimization [41]. In this study, we use the
eight-node quadratic quadrilateral (Q8) elements [40] to discrete the
unit cell, and the density points are positioned at the finite element
nodes for simplicity of implementation. Using these high-order
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— Computational point

Y

Fig. 1. Design variables within a specified influence domain are used to in-
terpolate the material density field at point y.

elements helps to avoid the ‘islanding’ phenomenon [42].
For a single-material topology optimization problem, the iPDI
model is expressed by

p() = Z w; ()x;

ieSy m

Here, p(y) is the density field representing the material distribution

in the design domain, x; is the relative density of the ith density point,

S, is a specified influence domain (here, a circular domain with a cutoff

radius R, as shown in Fig. 1), and w; is a weight coefficient with the
following form

@) =D,) Y, D), D) =1/d?

JESy (2)
where d;(y) = lly-y,ll; is the Euclidean distance between the computa-
tional point y and the density point y,.

The iPDI interpolation model has a range-restricted property, that is
min{x;} < p(y) < max{x;}
iesy ieSy 3

The range-restricted property of the iPDI model is necessary for a
material density interpolation in topology optimization to ensure its
physical meaning [40]. Recently, this model has also been extended to
the ply orientation design of fiber-reinforced composite structures
[43,44].

2.2. Multi-material interpolation

In this study, we consider three material phases for the micro-
structure design: hard material, soft material and voids [45]. The multi-
material SIMP interpolation, in conjunction with the iPDI model, is
employed:

E(y) = pl(y)Pl(pz(y)szH + (1—P2(V)P2)Es) 4)
where
P = D) @i, p,0) = D @i

iesy ieSy (5)

In Eq. (4), E , Ey and Es are respectively the elastic moduli of the
mixture, the hard material and the soft material; x! and x! are the re-
lative material densities of the density points. The quantities
D1 -P, (p,,p, > 3) are penalty factors. The density field p,(y) =1 in-
dicates presence of the materials at position y; while p,(y) =1 and
0,(y) =1 stands for the hard material, and p,(y) =1 and p,(y) =0
stands for the soft material. Specifically, the elastic modulus satisfies
the following relations
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Fig. 2. Macroscopic structure, microscopic array structure and periodic unit cell.

0 pO=0
EQ) ={Ei p,0)=1 p,0) =1
Es p() =1 p,(»)=0 (6)
The material volumes can be written as
Vr= ./;(P1(V)dy
Va= [, p,(»)dy
Vs = Jy P 0D(A—p,(»))dy %)

where Vr is the total material volume, V§; and Vs are respectively the
volumes of the hard material and soft material, Y denotes the whole
design domain for the microstructure.

2.3. Asymptotic homogenization of unit cells

The asymptotic homogenization method [29] is based on rigorous
mathematical theories, and is used to predict the effective properties of
periodic microstructures in the considered metamaterial design pro-
blem, as shown in Fig. 2.

In the asymptotic homogenization method, the macroscopic dis-
placement field is expressed using a small-parameter perturbation

us(xy) = uo(xy) + &y (xy) + Eu(xy) + ... 8)

where x and y are the vectors of the macroscopic and microscopic
coordinates, £ — 0 is an infinitesimal positive number and it relates the
macro scale and the micro scale with y = x/&, uy (xy), u;(x,y), ... are
Y -periodic smooth displacement perturbation functions (Y is the side
length of the unit cell).

Considering only the first-order terms in the asymptotic expansion
in (8), the effective elasticity of the unit cell can be written in the en-
ergy form as

pi= 1

= m ./Yl Cpqrs (Egéij)_‘s;q(xij))(grg(k l)_g:;(xkl))dy (lJ,k,l = 1727"',d)

9

where d is the spatial dimension (d =2 for the considered two-di-
mensional problem), Y and |Y| are respectively the domain and volume
of the periodic unit cell. The isotropic constitutive matrix has the form
C = EC,, with Cy being the non-dimensional constitutive matrix:

1 1 v 0
Cy= o B4 1 0
=70 0 a-v)2 10)

Here, v is Poisson’s ratio.
In Eq. (9), the characteristic displacement field y € % of the unit
cell is the solution to the following micro-scale problem [29]:

234
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where v is the virtual displacement, and f’;,,:{v:vis Y —periodic}
is the space of virtual displacements. The fluctuation strain &} (y"')
is defined through the strain-displacement relations ¢
ofy = (6xM 19y, + 8¢ /0y,)/2, and 5*) represents the three in-
dependent unit test strain fields, namely the horizontal unit strain
g2 = (1,0,0)T, the vertical strain ¢2?? = (0,1,0)" and the shear unit
strain €30 = (0,0,1)".
3. Formulation of topology optimization and sensitivity analysis
3.1. Mathematical statement of topology optimization

Topology optimization of multi-material chiral auxetic metamater-
ials can be formulated as

Find X1,X2

to minimize f (DY)

subject to j;{ CogrsEpg W) (r)dy = _/;{ CogrsEpgVNeXdy Vv e I~/¢
< iV

VH < f]—[ %

gdH =0

0 < Xmin <X <1,0<xi <10 =1,2,....N)

12)
where {x!,x2,..., x ¥, {x3, x2%,..,x)}' are the vectors of design vari-
ables; fr, fi;, and f; are the volume fractions of the total material, the
hard material and the soft material, respectively; V; is the whole volume
of the unit cell, and N is the total number of density points.

The effective elasticity tensors can be written in the following ma-
trix form

Dllll D1122 D1166

DH = D222 Diaes

Syms Deee6 13)

The optimization objective in (12) is defined as the function of the
effective elasticity constants of the microstructure [33]

f(D) = Dy13—q" (D + Do) g € (0,1) 14

where n is the iteration number of the topology optimization process, q
is a prescribed constant, which is set to be 0.8 in this study. It is obvious
that the objective function approaches Djjp, with increasing n. The
component Ds1, is negative for anisotropic NPRs metamaterials,
therefore we expect to obtain a microstructure exhibiting a chiral ne-
gative Poisson’s ratio through minimizing this objective function from
an initial chirality configuration to achieve a negative value of D;i,.
However, the resulting chirality NPR metamaterials obtained by
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minimizing the mentioned objective function may be anisotropic.
Therefore, we include a material symmetry constraint g(D") = 0 in the
optimization problem (12) to impose orthogonal anisotropic or iso-
tropic constraints. This constraint function is defined as [46,47]

D6+ D% ;
ies T 22266 Orthogonal anistropy
— ) @O +D2222)
((D1111 + D2222) — 2(D1122 + 2Dg666))% + (D111 — D2222) Isotropy
(D111 + D2222)?
15)

In Eq. (13), all the components are nonzero ones for anisotropic
chirality NPRs. The orthogonal anisotropic constraint in Eq. (15) re-
quires that the components Diies, Des11, Daes and Dggy, are all
zeros. Further, the isotropic constraint imposes the relations
Dumn = 2Dgsss + D112z and Diiig = Daga).

The equilibrium equation for determine the characteristic dis-
placement y in Eq. (11) has the following discrete form in the finite
element analysis

Ky=F (16)

where K and F are the global stiffness matrix and the load vector of the
unit cell, respectively. They are given by

M
K=Y k‘=
e=1

M
f BTCe%y,
e=1

M M
> I/‘;e B'CBdy, F=) f°=
=1 e=1

a7

where k¢ and f° are respectively the stiffness matrix and the load
vector of element e, M is the number of finite elements in the unit cell,
and B is the strain-displacement matrix.

3.2. Sensitivity analysis

The sensitivity analysis of the objective function, constraint func-
tions are presented in this section. The derivatives of the objective
function with respect to the design variables are expressed as:

of (W) _ of (D) oD
ax), DM ax},

(i=1.2,.,N;m=12)
18)

where m = 1 and m = 2 represent the hard material and soft material,
respectively. The sensitivity of the effective elastic matrix has the fol-
lowing form

i d J; Cpqrs (E}())éij)_ggéij) ) (Erg(k[)_g;;(kl) )dy

Y1
1
1Yl ‘/;
spéf) Kl ki
(e V=i D)dy
m

oDt

o}, ax},
6Cpqm

ax),

— 0(!}) *(l]))(go(kl) *(kl))dy

2 )
~ v e

1 G
i Iy oxl

2 d
m(‘/; Cpqrs ay [

(epP—e5 ) (en® g0 dy — ...

aX;(U)
%Xy

3 X*(y)
0D gy — f Cogrs— N GL’ (D dy)
19
Note that Eq. (11) has another form

‘/Yl Cpq}S

In the last term of Eq. (19), the derivatives of the characteristic
displacement field with respect to the design variables B)(;(")/ax,’n be-

Avf o
(VU)Ers(X*k’)dy— Jo Coaneps? a; dvy=0, vve

(20)

long to the same periodic space 17;,, as the characteristic displacement
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fields y. Therefore, the virtual displacement v in Eq. (20) can be re-
placed by 5)(;(ij)/ dx,\,, which leads to
ij

3 (% 3
f C pqrs T |Ers (X*kl)dy_ f G qrsEI%y ( )dy =0
Y% [ ) % @1)

Inserting Eq. (21) into Eq. (19), we obtain the sensitivity of the ef-
fective elastic matrix with respect to the design variables as
aCpqrs
o),

ax:-kl

0x,

oD _ 1
), Y

P 0()_ E*(U))(EO(kl) E*(kl))dy
e (22)
Here, the derivations of the constitutive matrix C with respect to
design variables can be deduced using the interpolation model in Eq.

@.

55 = P PO Vw00, 0)Ex + (1=p, ())E)Co
50 = P PO 0)P V0 (0) Ei—Es) Co 23)
where
90, ,0)  [wi() i€S,,
g {0 ie:‘sy(m‘l’z) 24)

In addition, the sensitivities of volume constraints have the fol-
lowing forms

= koo =
W= [y @) p,0) dy 2= fop®e®dy Vies,
3 = Jr @) (0,00 dy @Vs = - [ 0 @) dy

(25)

3.3. Numerical implementation

The flowchart of the proposed method is given in Fig. 3. First, the
initial values of the design variables x; and x, are given. Then, the
Young’s moduli of the constituent materials in the unit cell are inter-
polated with the iPDI model given in Eq. (4). The finite element analysis
with periodic boundary conditions is then performed on the unit cell,
and the effective material properties, the objective function, the con-
straints and the corresponding sensitivities are obtained. Finally, the
method of moving asymptotes (MMA) optimizer [48] is used to update
the density design variables. This process is repeated until the pre-
scribed stopping criterion is met.

4. Numerical examples

In this section, we first carry out microstructural topology optimi-
zation of anisotropic, orthogonal anisotropic and isotropic chiral
auxetic metamaterials using the proposed method. Then, we compare
the effective material properties of the orthogonal and isotropic chiral
auxetic metamaterials. Finally, we perform linear finite element ana-
lysis of the periodic array structures composed of the optimized unit
cells using the software ABAQUS.

In the numerical examples, the effective Poisson’s ratios, effective
bulk and shear moduli of the optimized chiral NPRs metamaterials are
evaluated. The effective Poisson’s ratio of isotropic chirality NPR me-
tamaterials is given by ¢ = Dj155/D1111 = Da211/Da2ps. For the orthogonal
anisotropic chirality NPR metamaterial, we compute the effective
Poisson’s ratios y,, and u,, in the two principal directions using the
components of the effective compliance matrix as [49]
M1y = —S12/ 824y = —Sx1/S11. Because there are no definitions of real
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Evaluating objective function and
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!

Updating density design variables
using MMA

No

1 Yes

L Optimization solutions l

Fig. 3. Flowchart of the proposed method.

Poisson’s ratio for the anisotropic chirality NPRs, we consider the ratios
M5 = Dup/Dun and py; = Diipn/Dypn as an approximate measure of
deformation ratio in the two principal directions for the case of aniso-
tropy chiral NPRs metamaterials, and refer to them as quasi-effective
Poisson’s ratios. The bulk modulus K for the isotropic NPR metama-
terials, and the quasi-effective bulk modulus K* for the anisotropic and
orthogonal anisotropic chiral NPR metamaterials are computed as
(D111 + Dogy + Diiy + Dopip)/4 . The effective shear moduli for all the
cases are evaluated as G = Dgggp.

For all the examples considered in this section, the Poisson’s ratios
are vy = vg = 0.3, and the Young’s moduli for the hard (Ey) and (Es)
soft materials are respectively 10 Gpa and 2 Gpa. Square plane stress
elements with unit size are used in the finite element discretization.

In order to obtain optimized microstructures with desired chirality,
we introduce chiral initial configurations as schematically shown
in Fig. 4, and set the initial design variable values to
xl=xi=f (i=12..N). As examples, the effective properties of
such initial designs with the total volume fraction f; = 0.6 are listed in
Table 1.
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(b)

(@)

Fig. 4. Initial designs for topology optimization of unit cells. The red color
indicates presence of materials (with the same initial volume ratios for hard and
soft materials), and the white color represents voids. (a) Initial design adopted
in Sections 4.1 and 4.2, (b) initial design adopted in Section 4.3. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

4.1. Topology optimization of anisotropic chiral auxetic metamaterials

4.1.1. Single-material and bi-material microstructures for chiral auxetic
metamaterials

We now consider topology optimization of bi-material anisotropic
microstructures for chiral auxetic metamaterials. The volume fractions
of the hard material and soft material are 20% and 30%, respectively.
For comparison, the optimized single-material designs are also given, in
which the soft material is used and the material volume fraction is 50%.
The design domain is discretized with 71 x 71 elements, and the cutoff
radius R in the iPDI model is 1.5. We adopt the initial configuration
shown in Fig. 4(a).

The optimization solutions for the single-material and bi-material
microstructures are shown in Fig. 5(a) and (c), respectively. Fig. 5(b)
and (d) are the 4 X 4 arrays of the optimized unit cells. The black and
gray colors represent the hard and soft materials, respectively. It is seen
that the finial designs have clear and smooth boundaries. In Fig. 5(c),
the hard material forms the major frame and joints of the unit cell,
while the soft material locates at connection regions and the central
area, and provides certain flexibility to enhance the NPR effect. Note
that the tensile-shear coupling terms Dij6, Dgs11, Des2z, and Dyes are
nonzero under the anisotropic conditions.

The optimized quasi-effective Poisson’s ratios for the single-material
design (Fig. 5(a)) are u;; = u;; = —0.713, while the values for the bi-
material design (Fig. 5(b)) are u, = u;; = —0.806. This shows that the
optimized bi-material microstructural unit cell has a larger NPR effect
as compared with the single-material one.

The value of quasi-effective bulk modulus K* is 43.700 Mpa for the
bi-material auxetic microstructure, which is higher than the value
29.375 Mpa for the single-material design. Also, the bi-material design
has a higher shear modulus G (22.849 Mpa v.s. 13.077 Mpa). This
shows that the bi-material NPR microstructural design is able to achieve
a larger overall stiffness as compared with single-material design.

Fig. 6(a) depicts the iteration histories of the quasi-effective Pois-
son’s ratio u 7, and the objective function f, and Fig. 6(b) shows the
corresponding iteration histories of the total material volume fraction
fr and the hard-material volume fraction f;; for the bi-material design in
Fig. 5(c). Some selected intermediate designs are shown in Fig. 6(c). As
can be seen from the figures, the topology optimization iteration con-
verges very fast. In this example, although we let the topology opti-
mization iteration to run for 250 steps, and main features of the load
transmission path of the unit cell have been formed within the first
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Table 1

Composite Structures 195 (2018) 232-248

Effective elastic matrices and effective properties of initial designs (f; = 0.6).

Microstructure shown in Fig. 4(a)

Microstructure shown in Fig. 4(b)

362.901 108.447 —0.136 334.823  99.139  0.5301
DY = |108447 362.901 0.136 | (Mpa) DM =|99139 334.8234 —0.5301| (Mpa)
—0.136 0.136 126.772 0.5301 —0.5301 117.1475
sy = py; = 0.299 = py; = 0.296
K* = 235.674 Mpa K* = 216.981 Mpa
G = 126.772 Mpa G = 117.148 Mpa
o 0.5 T T T 0
£ 04 1
8 P 1-50
202 — M 1 5
§ g R f 9 -100 5
2 -150 §
=] S ==
~-0.2 1200 2 &
208929 -149.054 -44.276 v a5
H =-04 12508
D" =|-149.054 208.929 44276 (Mpa) 15 “nt B
£.06 1300 3
44276 44276  13.077 5 ~000
'%-0.8 -350
(a) (b) 2
o 4 . . ; . 400
0 50 100 150 200 250
Iteration numbers
(a)
0.7 T T T T
0.6 1
20.5
451.449 -364.068 -91.302 ’g
D" =| 364068 451488 91306 | (Mpa) = 04r |
91302 91306 22.849 203f 1
=]
© (d) S02} -
Fig. 5. Optimization solutions of the anisotropic microstructures for chiral 0.1 1
auxetic metamaterials. (a) Single-material design; (b) 4 X 4 array of the single- 0 L L ) )
material unit cell; (c) bi-material design; (d) 4 X 4 array of the bi-material unit 0 50 100 150 200 250
cell. Iteration numbers
(b)
thirty steps, and after that the material boundaries change only slightly
in local areas. This demonstrates the validity of the proposed method.
The optimized load paths for both bi-material and single-material
microstructures are similar, and they closely resemble the classical Step:1 Step:5 Step:10 Step:20 Step:30 Step:250

chiral Ligament structures [38,39]. The deformation mechanism of the
optimized bi-material chiral microstructure is illustrated in Fig. 7, in
which the colored regions indicates the periodic boundary conditions.
This unit cell has three main parts: the ligaments, the joints, and the
central part. The microstructure undergoes a clockwise rotation under
application of bi-axial loading conditions. The rotating deformation
arises from the ligament deformation around the joints. This me-
chanism of deformation differs greatly from that of a re-entrant mi-
crostructure.

4.1.2. Effects of hard material volume fractions

We now study the influences of the material volume fractions f;
(hard material) and f; (soft material). To this end, we fix the total
material volume ratio at f; = 60%, and run the topology optimization
process for different combinations listed in Table 2. Table 3 presents the
optimization results. Again, for the bi-material designs (Cases 2, 3, and
4), the hard material acts as the joints and main load-bearing members,
whereas the soft material is mainly located at the connection regions or
attached to the hard material members. Such a pattern helps to enhance

(©

Fig. 6. Iteration histories of the topology optimization of bi-material chiral
auxetic microstructure. (a) Quasi-effective Poisson’s ratio u }, and objective
function f; (b) volume ratios f; and f;;; (c) selected intermediate designs.

the NPR effects while still retaining the stiffness of the microstructure,
as revealed by comparison between the bi-material and single-material
designs.

It is also seen from Fig. 8 that the quasi-effective bulk modulus and
shear modulus increase with f,;. However, this is not the case for the
quasi-effective Poisson’s ratios y, and u,, which implies that a com-
promise should be made when choosing an appropriate volume-fraction
combination of the hard and soft materials to achieve a desired NPR
property.

Fig. 8(b) shows that the plane shear modulus G is smaller than the
quasi-effective bulk modulus K* for all the cases, even when the values
of w5 and u;, are both smaller than —0.5. This indicates that the op-
timized anisotropic auxetic microstructures have a relatively low ability
to resist shear deformation in comparison to conventional isotropic
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e
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Fig. 7. Rotating deformation mechanism of the optimized chiral auxetic me-
tamaterial.

Table 2
Different cases of material volume fractions f;; (hard material) and f;
(soft material).

Case fa fs

1 0% 60%
2 15% 45%
3 30% 30%
4 45% 15%
5 60% 0%

auxetic materials.

4.2. Topology optimization of orthogonal anisotropic bi-material chiral
auxetic metamaterials

In this section, we optimize the microstructures under the ortho-
gonality constraint expressed by Eq. (15). The value of f; and f; are
60% and 45%, respectively. The number of finite element mesh is
60 X 60, and the cut-off radius is R = 2. The obtained optimization
results are given in Fig. 9. The optimized load path has remarkable
differences compared with classical chiral ligament structure [2].

In this design, the coupling components Di1¢6, Des11, D22gs and Dego
of the effective elastic modulus matrix become very small as a result of
the orthogonal constraints. The constitutive law of the unit cell can be
written as

o = D" or £ =S (26)

where & and £ are the average stress and strain of the periodic micro-
structure, and S is the effective compliance matrix, which is the in-
verse of the effective elastic matrix in equation (13), which can be
written as [49]

S Sz 0
SH=DH =S, S 0

0 0 Sg 27)
where
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Lo L
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L, M1z Moy S, =
E E»

Sp=—"=—=, Ses = ——
G2

S =
11 E B

(28)

The parameters Ej,E, and Gj, are the principal direction elastic
moduli and the plane shear modulus, respectively. The Poisson’s ratios
are u;, = —0.720 and u,, = —0.720. The quasi-effective bulk modulus
K* and shear modulus G are 117.843 Mpa and 151.997 Mpa.

4.2.1. Effects of hard material volume fractions

We now compare the optimization results for different volume
fraction ratios of hard/soft materials as listed in Table 2. These results
are summarized in Table 4. With increasing f;; (from Case 1 to Case 5),
most of the hard material members tend to become stronger, though
some thin members appear in Case 3 and Case 4. Our numerical ex-
periences show that these thin bars will disappear when an increased
cut-off radius R is used in the density interpolation. We also find that
the periodic arrays for Case 1 and Case 5 are very similar to the Kir-
igami structures [50,51] that have been used in many fields.

Fig. 10(a) shows the changes of the Poisson’s ratios u,, and u,,
versus the hard material fraction f;. Both Poisson’s ratios attain their
minimum values for the case f;; = 45%. There is a strong oscillation in
Fig. 10(a). This may be due to the large topological changes for dif-
ferent usage of the hard material. Moreover, the quasi-effective bulk
modulus K* and the shear modulus G increase monotonically with in-
creasing f; in Fig. 10(b). For all the cases of material fraction values,
the shear moduli obtained under the orthogonal constraint are higher
than those under the anisotropy constraint, as can be seen from
Fig. 8(b) and Fig. 10(b). Also, in contrast to the case of anisotropic
design, the quasi-effective bulk modulus K* and the shear modulus G
have very close values in the orthogonal anisotropic design.

4.2.2. Effects of total material volume fractions

In this example, we consider different total material volume fraction
fr ranging from 30% to 70% while keeping the ratios for the hard and
soft fi;/fs as 2/3. The values of f, f; and f for the considered cases are
listed in Table 5.

The optimization results for these cases are given in Table 6 and
Fig. 11. The effective Poisson’s ratio u,, achieves its minimum value at
fr = 50%. It is intesting to note that the shear modulus G becomes
larger than the quasi-bulk modulus K* for the case f;. = 60%.

4.3. Comparisons between optimized orthogonal anisotropic and isotropic
bi-material microstructures of chiral auxetic metamaterials

In this section, we compare the optimization results obtained under
the orthogonal anisotropic and isotropic constraints. The initial mate-
rial layout is shown in Fig. 4(b) and the cut-off radius is R = 2.5. The
hard and soft materials volume fractions are respectively 30% and 30%.

When comparing the optimization results presented in Table 7, we
find that the optimized isotropic microstructure has a relatively high
shear modulus, and the orthogonal microstructure exhibits a balance
between the quasi-effective bulk modulus and shear modulus. This
shows that the stiffness of bi-material chiral microstructures can be
tailored when achieving the negative Poisson’s ratio through topology
optimization.

4.4. Finite element verification of optimized metamaterials

We now perform the finite element simulations to verify the opti-
mized metamaterial microstructures. We reconstruct the unit cell model
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Table 3
Optimization results for different volume fractions under anisotropic condition.

Composite Structures 195 (2018) 232-248

Case Unit cell Array (4 x 4) DY (Mpa) Hi5p K*, G (Mpa)
1 178.787 —118.854 —39.154 — 0.645, —0.6445
—118.154 178.788  39.154 9.967,12.866
—39.154 39.154  12.866
2 474502 —305.490 — 34916 — 0.644,—0.796
—305.490 383.801  27.204 61.832, 28.861
—34916  27.204  28.861
3 705.263 —551.388 138.070 —0.782,—0.778
l —551.388 728314 —140.321 82.702, 35.017
1 l 138.070 —140.321 35.017
4 ﬂ 668.814 —436.326 — 139.691 — 0.652,—0.6521
—436.326 668.814  139.691 16.244, 45.214
ﬁ -‘L —139.691 139.693  45.214
ddided.
slaleln]
5 " 878.713 —579.363 — 200.202 — 0.656,—0.656
—579.363 878.713  200.202 149.678, 69.092
—20020 200202  69.092
¥

(18.4 x 18.4 x 1 mm) for the isotropy microstructure in Section 4.3, as
shown in Fig. 12(a). The corresponding 8 x 16 periodic array structure,
which is discretized using quadratic tetrahedron solid elements, is
shown in Fig. 12(b).

To validate the negative Poisson’s ratio effects, we apply a dis-
placement of AV = 60 mm (corresponding to a strain of 20.380%) to
the 8 X 16 periodic array, while restricting the displacements in y and z
directions at the bottom edge, and the displacement in x direction at the

-0.60
-0.651 * 1
* * %
2 .
B -0.704 * u - T
5 .0.751 ML
3 2
&~ .0.80 . ]
-0.854+— . . . —
0%  15% 30% 45% 60%
A

(@)

black point marked in Fig. 13(b). The numerical results for the com-
pressive and tensile loading conditions are shown respectively in
Fig. 13(a) and (c). The Poisson’s ratio is estimated as u,, = —AUl,/AVI,.
Here, AU is average relative displacements of the red points marked in
Fig. 13(b), I, and I, are the lengths of the periodic array structure in x
and y directions. The Poisson’s ratio u,, predicted by this linear finite
element model for the compressive and tensile conditions are both
—0.672, which has a 5.750% difference with the value of the

160 v
140 ] i
= 120 x K
& s G X |
2 1001 i
=
= 80- X 4
3 .
S 604 X .
= 40 d
0 * S ®
20{ i
0%  15% 30% 45%  60%
A

®

Fig. 8. Properties of the optimized designs obtained with different volume fractions of the hard material. (a) Quasi-effective Poisson’s ratios ', and u,;; (b) quasi-

effective bulk modulus K* and shear modulus G.
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840.983 -605.703  0.151
D" =|-605.703 841.941 0256 | (Mpa)
0.151 0.256  151.997

2.46780 1.77540 -0.00544
S"=|1.77540 2.46503 -0.00592 |10° (Mpa)fl
-0.00544 -0.00592  6.57909
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(a) (b)
Fig. 9. Optimization solutions of the orthogonal microstructures for the chiral auxetic metamaterials. (a) Bi-material design; (b) 4 X 4 array of the bi-material unit
cell.
Table 4
Optimization results for different volume fractions under orthogonal constraint.
Case Unit cell Array (4 X 4) D (Mpa) Hi2:M21
K*,G(Mpa)
1 262569 —176.737 — 0.027 —0.671, —0.671
—176.737 262.573 —0.007 42.616, 56.086
—0.027 —0.007 56.086
2 328.894 —286.783 0.042 —0.8718, —0.5687
—286.783 504.304 —0.079 64.909, 64.880
0.042 —0.079 64.880
3 665.752 —451.002 0.242 —0.667, —0.733
—451.002 608.880 —0.285 93.158, 97.461
~ 0.242 —0.285 97.467
" il" i
E\)&\)}__\—}
l!\i ‘\iwl!\'-\
!‘:’.‘__“",!\
J -
4 g~ g~ gy 858.229 —631.667 —0.025 —0.760, —0.760
i\ I\
¥ “;‘:‘;“‘; — 631667 857.235  0.097 113.032, 155.799
; —0.025 0.097  155.799
5 —0.643,—0.643
—-0917 1.359 0.000 220.875,254.800

—0.000 0.000

3[ 1.359 —0.917 —0.000
10

0.255

240
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-0.50 280
-0.551 * 1 - 2401 X ]
' . Hyy = X G
-0.60- {1 & . ¢
* u, = 200 o K ;
2 -0.651 e =
$ 001 x X £ 160- x 1
= -0.70 12,5 ]
é -0.754 ¥ * 1 = ¥ ¢
£ 0.801 4 807 x X ]
-0.85- . 401 E
X
-0.90+— . . . . 04— . . . .
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Ju T
(a) (b)

Fig. 10. Properties of the optimized design obtained with different volume fractions of hard materials. (a) Effective Poisson’s ratios u,, and u,,; (b) the quasi-effective
bulk modulus K* and the shear modulus G.

Table 5 asymptotic homogenization (—0.713). This discrepancy may be attri-
Different cases of material volume fraction f; (total material), f; bute to the finite-size effects of the finite element model. The details for
(hard material), and f; (soft material). the displacement and stress are given in Appendix A.

fr Ju Js . . . .

4.5. Finite element simulation of 3D chiral array structures

30% 12% 18%

40% 16% 24% In this sub-section, we present finite element simulations of 3D

50% 20% 30% eriodic array structure composed of the optimized microstructural unit

60% 24% 36% P y P P

70% 28% 42% cells. By using the similar method in papers [18,19], we construct the
3D structures from the optimized microstructural unit cells.

Table 6
Optimization results for different total volume fractions under orthogonal constraint.
Case Unit cell Array 4 x 4 D H (Mpa) HiasHa
K*, G (Mpa)
1 225861 —137.092 0.056 —0.603, —0.567
—137.092 242434 0.003 48.527, 6.731
0.056 0.003  6.731
2 331.011 —196.234 0.098 —0.604, —0.617
—196.234 323735 —0.076 65.5694, 26.084
0.098  —0.076 26.084
3 373.692 —310.509 0.1890 —0.825, —0.600
—310.509 506391  0.017 67.434, 35.2406
0.190 00172 35.240
4 478.993 —348.951 0.360 —0.727, —0.632
—348.951 555467 —0.068 84.13, 93.713
0360  —0.068 93.713
5 649.271 —419.991 — 0.067 —0.630, —0.630
—419.991 645.539 0134 113.707, 80.388
—0.067 0134  80.388
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Fig. 11. Properties of the optimized designs with different total material volume.

the shear modulus G.

Table 7
Optimization results under orthogonal and isotropic constraints.

Isotropic microstructure

Orthogonal microstructure

B R
SOOI

Ayl
POPOPOK
e
8585

579188 —343.058 0.105 307.639 —219.444 — 0.051
— 343058 531.083 - 0.026 | (Mpa) —219444 305795  0.050 |(Mpa)
0105  —0.026 107.908 —0051 0050  263.074
Hrp = —0.600 p=-0713
Hay = —0.643 K = 44.125 Mpa

K* =106.039 Mpa G = 263.074 Mpa

G = 107.908 Mpa

Modulus (Mpa)
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(a) Effective Poisson’s ratios y,, and u,,; (b) quasi-effective bulk modulus K* and

©

element simulation results for 8 x 16 periodic array. (a)

Deformation under the y direction compression displacement, 60 mm; (b) un-
deformed structures assembled by 128 unit cells; (c) deformation under y di-
rection tension displacement, 60 mm.

Fig. 12. Geometric models for the isotropy bi-material chiral auxetic metamaterials. (a) unit cell; (b) 8 x 16 periodic array.
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Fig. 14. Three-dimensional chiral rotational tube composed of the optimized
bi-material unit cells. (a) Bi-material unit cell; (b) chiral tube.

Composite Structures 195 (2018) 232-248

4.5.1. Chiral auxetic rotational tube

We first consider an auxetic rotational tube constructed from the
optimized isotropic microstructure (see Section 4.3), as shown in
Fig. 14(b). Each unit cell is first rotated by 45° x k (k = 1, 2, ..., 7), and
then connected together to form a circular configuration as shown in
Fig. 14(a). The final structure has eight periodic layers in y direction.
We expect that this cylinder shell-like structure possesses not only the
NPR effect, but also undergoes rotation under an axial loading condi-
tion.

The finite element model consists of 6017,020 quadratic tetra-
hedron solid elements and 9193,537 nodes. We apply a compressing of
10 mm (corresponding to an axial strain of 6.79%) to the upper surface
while fixing the bottom surface. As seen from Fig. 15, the structure
exhibits a shrinking in the middle cross section and a rotation around y
axis, which confirms that this 3D periodic structure has both NPR effect
and rotational characteristic. For the details of the deformation process,
the readers are referred to the movies (M1, M2) provided in supplement
materials.

U, Magnitude
+1.013e+01

-1.025e+01

r

Z

Movie 1.

U, Magnitude
+1.025¢+01

Movie 2.
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U, Magnitude

+1.025e+01
+9.399e+00
+8.544e+00
+7.690e+00
+6.835e+00
+5.981e+00
+5.127e+00
+4.272e+00
+3.418e+00
+2.563e+00
+1.709e+00
+8.544e-01
+0.000e+00

Fig. 15. Finite element simulation of the chiral tube structure. (a) Undeformed
shape; (b) displacements under axial load.

o,
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4.5.2. Chiral twisting structure

First, a 3D unit cell is assembled with the optimized microstructure
(Fig. 16(a)), and then five of such unit cells are assembled together to
form a chiral twisting structure, as depicted in Fig. 16(b). We will show
through finite element analysis that this chiral structure is able to
transform a uniaxial load into a twisting deformation, similarly as the
mechanical metamaterial reported in a recent study [18].

The finite element model of the assembled chiral twisting structure
consists of 2,336,517 quadratic tetrahedron solid elements and
3,570,124 nodes. All the degrees of freedom at the bottom surfaces are
fixed and a displacement of 10 mm (corresponding to an axial strain of
10.87%) along y direction is applied to the upper surface. As can be
seen from Fig. 17, this structure exhibits obvious twisting under the
uniaxial compression, with a twisting angle ¢ = 16.812° at the top
surface. The readers are referred to the (M3-M5) provided in supple-
ment materials for details of the deformation process.

(b)

Fig. 16. Mechanical metamaterial twist structures. (a) Unit cell of the three chiral microstructures; (b) bi-material chiral auxetic twisting structure;
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Fig. 17. Finite element simulation of chiral twisting structure. (a) Undeformed shape; (b) displacements under axial load; (c) twisting of top surface.

5. Conclusions

In this paper, we studied topology optimization of bi-material mi-
crostructures of metamaterials to achieve chiral auxetic properties. The
iPDI model was combined with the bi-material interpolation scheme to
represent the material distribution in the unit cells. Well-defined mi-
crostructural topologies and material boundaries could be obtained
with the proposed optimization model. The optimized negative
Poisson’s ratio and stiffness of the metamaterials have a dependency on
the volume fractions of each material phases. We also found that the
stiffness of bi-material chiral auxetic microstructures could be tailored
along with the negative Poisson’s ratio effect by imposing the ortho-
gonal or isotropic constraints in the present optimization model.

We performed the finite element analysis to verify the Poisson’s
ratios effects. It was shown that a 3D chiral structure composed of

Appendix A

(see Fig. A).

246

periodically arrayed optimized unit cells could transform linear uni-
axial displacements into twisting deformations.

The optimization results can be used as guidance to the design of
artificial multiple-material microstructures for auxetic metamaterials.
The method may be also extended to the design of other novel chiral
microstructures to achieve specified functional requirements.
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Fig. A. Finite element simulations for tensile (a)-(c) and compressive (d)-(f) conditions of 8 X 16 array. (a), (d) displacements in x direction; (b), (e) displacements in
y direction; (c), (f) von-Mises stress.
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